
The User Agent: An approach for service and pro�le management in

wireless access systems

Carsten Pils
Informatik 4 (Communications Systems)
RWTH Aachen, 52056 Aachen, Germany

pils@i4.informatik.rwth-aachen.de

Jens Hartmann
Ericsson Eurolab Deutschland GmbH
Ericsson Allee 1, 52134 Herzogenrath

jens.hartmann@ericsson.com

Abstract

With their special ability to operate disconnected and

autonomously mobile agents are well suited for wire-

less access networks: Mobile user can dispatch mobile

agents to the �xed network. While the agent operates

autonomously in the �xed network, the user's mobile

device disconnects. Reconnection is only required when

the agent needs user feedback or returns results. Thus,

mobile agents have the ability to save wirless network

resources.

While agents operate disconnected they require a cer-

tain knowledge of the user's preferences for service

trading. But user preferences might change frequently

and thus agents require a central information storage

which provides up to date user preference descriptions.

In this paper we propose the User Agent which man-

ages user pro�le entries and acts as the user's central

service trader. Agents can request services at the User

Agent which correspond to the user's preferences.

Keywords: Mobile agents, service trading, agent

management, disconnected operations, personal mobil-

ity.

1 Introduction

Although 3rd generation communication systems
like UMTS will o�er mobile users network access at
considerable quality of service, radio resources are still
scarce and su�er from interferences. Thus, applications
programs specially designed for mobile users should be
optimised for saving network resources and must tol-
erate frequent disconnections. With their special abil-
ity to operate disconnected and autonomously mobile
agents are well suited for wireless access networks [1]:
An agent based application running on a mobile de-
vice can dispatch a mobile agent to the �xed network.

Internet

��
��
��
��

��
��
��
��

��
��
��

��
��
��
���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���
���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Figure 1. Wireless Access Network

While the agent autonomously operates in the �xed
network the device disconnects. Reconnection is only
required when the agent needs user feedback or returns
results.

Thus, mobile agents have the ability to save net-
works resources and tolerate frequent disconnections.
In recent years, many research projects have investi-
gated mobile agent usage for wireless access networks
[2], [3], [4], [5], [6]. The objective of these projects is the
development of mobile agent management approaches
to support terminal and personal mobility.

Most management facilities o�er agents a certain
degree of freedom with respect to quality of service.
Agents can request di�erent quality of services degrees
by submitting parameters or use di�erent services. To
discover services there is a need for a service trader.
Park et al proposed a Service Center which allows
agents to retrieve service references from a distributed
database [7]. If required the Service Center returns a
list of appropriate services. Thus, agents can choose a
service based on user preferences out of a multitude of
alternatives to complete their tasks.

As user preferences and registered services might fre-
quently change, �xed service lists are not useful for
agents. To solve this problem agents can carry ser-

1



vice descriptions and trade services right before service
usage. But the latter solution still has some disadvan-
tages: First, the agent size is increased by service de-
scriptions. Second, processing of agents is delayed due
to the service discovery and selection process. Third,
once the agent is launched the user cannot modify the
service descriptions.

To solve this problem, we propose the User Agent
which supports mobile agent service trading and man-
agement. Basically, the User Agent acts as an active
extension of the user pro�le. It is envisaged to im-
plement the User Agent in JAE (Java Agent Environ-
ment) [6].

The remainder of this paper is organised as follows:
Next we brie
y describe the JAE agent technology in
section 2 and the User Agent in section 3. Following, we
give an example of how the User Agent supports mobile
agent management 4. Performance considerations are
addressed in section 5.

2 The Java Agent Environment

Each JAE agent system provides the core technology
for mobility, security and services. An integral part
of an agent system is the Service Center. The Service
Center takes care of the administration of local services
and provides a trading mechanism for remote services.
Remote service trading requires a central repository for
all available services. The current release of JAE uses
the LDAP directory service for that purpose, as it has
the advantage of providing a distributed, standardised,
and publicly accessible database.

2.1 The JAE Service Center

The JAE technology distinguishes between mobile
and �xed service agents. While mobile agents can
migrate to di�erent agent systems by means of the
Agent Transport Facility, �xed service agents stay at
the agent system where they have been launched.
Since service agents cannot migrate they are considered
trustworthy and are allowed to access system resources.
Mobile agents must always interact with a service agent
when accessing system resources. Apart from providing
a controlled access to system resources, service agents
can also provide application services. Anyway mobile
agents must discover service agents. Therefore, agents
issue a service description of the desired service to the
Service Center (see �gure 2). The latter either me-
diates the request to a suitable local service agent or
provides information about another agent system that
o�ers the requested service.

service

user
profile

LDAP

1

2

4

3

Mobile
Agent

1

2

3

4

Service Description

Send Service Desc.

Filtered refernce list

List of service references

Request services

Agent
System

Service Center

Figure 2. Service Trading

Non local services are looked up in the LDAP di-
rectory tree. Among others the LDAP directory has
a service and a user pro�le subtree. Below the service
subtree service descriptions as well as service reference
information are stored [7].

2.2 The User Profile

User pro�les are stored below the user pro�le sub-
tree. They can be accessed via service agents and con-
tain for instant the user's private as well as business
email address, his phone and fax number, and the sys-
tem he is currently logged in. The user's current agent
system (i.e. the agent system he is currently logged-in)
is used to provide personal mobility.

Personal mobility allows a user to access communi-
cation services through di�erent devices, e.g., at home,
o�ce, mobile phone, notebook, PDA. This means that
the user has several di�erent access points. Agents
which need user feedback information or return results
must know the user's current agent system. By ap-
plying the user pro�le, agents can retrieve the current
agent system of a user: When the user logs-in at an
agent system, the latter writes its address to his user
pro�le. Now if an agent wants to get in contact with
the user the agent can look up the user pro�le and
retrieve the current agent system's address.

3 The User Agent

The User Agent is an active extension of the user
pro�le. Basically, its envisaged application is to act as
the user's central service trader. Thus, mobile agents

2



can request services from the User Agent which �t the
user's preferences.

To ful�l this task the User Agent comprises of a
static and a dynamic database. The static database
contains the user pro�le, his preferences, and service
descriptions. Applying the stored service descriptions
and the user's preferences the User Agent looks up ser-
vices with the help of the Services Center. Those ser-
vices which match both service descriptions and user
preferences are stored in the dynamic database. Once
the dynamic database is generated, mobile agents can
request a service from the User Agent. The User
Agent just retrieves a suitable service from its dynamic
database and sends the reference to the mobile agent.

3.1 Service Trading

As mentioned before the User Agent retrieves service
reference from the Service Center using service descrip-
tions and preferences stored in the static database.

3.1.1 Service Descriptions

JAE service descriptions contain all information about
a service agent. These informations are stored in
attribute-value pairs. There are four attribute-value
pairs specifying a service:

1. ServiceType: Description of the service category.

2. Action: Functions o�ered by this service.

3. Parameters : Parameters accepted or needed by
this service.

4. Return Values : Type values returned by the ser-
vice functions.

Since there must be common base values for these at-
tributes, JAE introduces the so-called Met-Keywords

that agent programmers use to specify services. Ser-
vice agents use these key words to describe the service
they o�er, while mobile agents need them to specify
the service they want to use. For example, a service
description object of a bank could look as follows:

� ServiceType = BANK.MY BANK

� List of ACTION descriptions:

� Action= CHECK BALANCE

� Parameters= INTEGER.ACCOUNT NUMBER

� Result Value=OBJECT.STATEMENT

� Action = GET STOCK INDEX

� Parameters = STRING.STOCK MARKET ID

� Result Value = INTEGER.INDEX

A service agent of \MY BANK" could register its refer-
ence with this service description object at the Service
Center. An agent which wants to use a banking service
to get the index of a particular stock market could issue
the following service description to the Service Center:

� ServiceType = BANK

� List of ACTION descriptions:

� Action = GET STOCK INDEX

� Parameters = STRING.STOCK MARKET ID

� Result Value = INTEGER.INDEX

Among others the Service Center will return a reference
of the BANK.MY BANK service. Note that the service
function �lters service descriptions with respect to the
ServiceType. Thus, if an agent issues the same service
description to the Service Center, but ServiceType set
to BANK.MY BANK service, the Service Center would
only return the BANK.MY BANK service [7].

3.1.2 Preference De�nitions

Along with the service description, a service agent can
store quality of service information in the service direc-
tory. These information are stored in attribute value
pairs. While the attribute is just a string the value
is an object allowing a complex quality of service de-
scription. For example, the BANK.MY BANK ser-
vice could describe the costs of a single transaction as
follows: attribute=COST.TRANSACTION, value=f


oat=0,1; STRING="USD" g | a single transaction
amounts to 0,1 US dollar.

It is the User Agent's task to order services with
respect to user preference. To this end the User Agent
calculates a preference number for each service.

Numerous attribute-value pairs can be associated
with one single service. The user will value each quality
of service parameter di�erently. To ease individual cal-
culation of preference numbers (with respect to individ-
ual services) we propose the use of preference objects.
Each preference object is associated with a service and
has two methods: STRING getKey() and INTEGER
getPreference(service). getKey() returns the name of
the associated service and getPreference() returns the
preference number. To calculate a service preference
number the getPreference() method requires its qual-
ity of service descriptions (retrieved from the Service
Center) as input parameter. Quality of service infor-
mation is stored in the service reference object.

Preference objects are created by the user and sub-
mitted to the User Agent. Each service entry in the

3



1

2

3

4

5

6

1

2

3

4

5

6
Agent
System

Manager

Service Center

LDAP

static dyn.
DB DB

retrieve service description and preferences

send service desription

send service desription

service reference list

service reference list

store service reference

User Agent

Figure 3. Generating dynamic entries

static database is identi�ed by a service key. The en-
try comprises of service key, service description, and
preference object.

3.2 Manager

Basically, the Manager controls the User Agent.
Among others it allows modi�cation of the static
database and generating of the dynamic one.

3.2.1 Generating dynamic entries

Generating of dynamic database entries is depicted in
�gure 3. The Manager fetches an entry from the static
database and issues the service description to the Ser-
vice Center. The latter responds with a list of service
references. Next, the Manager applies the preference
object to the reference list and sorts it in order to the
calculated preference numbers.

Finally, the Manager stores the best service refer-
ence in the dynamic database. Again the entry is iden-
ti�ed by the service key.

An agent which requests a service reference from the
User Agent must only provide the service key. Hav-
ing the key it is straightforward to retrieve a service
reference from the dynamic database. Note that it is
required that agent applications and User Agent must
agree about a service key.

A dynamic entry is always updated when the user
modi�es the preference object. As services might
change their quality of service parameters, it is required
that dynamic entries are updated at regular intervals.
To this end the user speci�es an update interval for
each entry. Furthermore, a service entry is updated if
an agent reports that the recommended service is not
available.

3.2.2 User pro�le management

Hitherto, the User Agent showed to be the user's cen-
tral service trader. But being an active extension of
the user pro�le its ability goes far beyond mere service
trading. We motivate additional features of the User
Agent with the help of the following example:

A user runs an agent based application in his of-
�ce. During his free time he might be committed to a
honorary position and runs a special agent application.
Thus, the user might want to run three current agent
systems: one in his o�ce, one at home related to the
honorary position, and one \private" agent system. For
each of these agent systems the user is expected to have
a di�erent user pro�le. Thus, the user is registered to
the agent world three times. But registering three user
pro�les has several disadvantages: First, each user reg-
istration consumes system resources. Second, the user
must access several user pro�les if he wants to mod-
ify a common entry. Third, removing or adding a user
pro�le is quite complicate.

To ease managing multiple user pro�les we propose
that the User Agent allows maintaining more than one
user pro�le. It distinguishes di�erent pro�les by adding
a su�x to the user's login name. With respect to the
given example a user could have the following pro�les:
user:business, user:honorary position, or user:private.
Our approach has several advantages:

� System resources are not wasted since the user's dif-
ferent pro�les share information.

� The user must access only one User Agent to modify
his user pro�le.

� Removing and adding a user pro�le is simple since
it must not be registered by the network provider.

� Since the User Agent can access the user pro�les,
it can forward information from one pro�le to an-
other. For example, a user does not want that agents
related to his business pro�le send messages to his
private pro�le. But if an agent has some important
business information then the agent should send the
information to the user's current agent system. As
each agent must authenticate to the User Agent,
the latter knows the agent's owner identi�cation.
Based on agent and agent owner identi�cation the
User Agent can decide in accordance to user de�ned
rules which information should be forwarded to the
agent. A simple approach for user de�ned rules are
access control lists. But access control lists do not
allow description of complex forwarding rules like:
"If agent X returns result to my business pro�le in-
dicating emergency give all business related agents

4



access rights to my private user pro�le entries: cur-
rent agent system, email address, and fax". There is
a need for a rule based information exchange man-
agement.

With its ability to maintain multiple pro�les the
User Agent eases pro�le management and allows 
exi-
ble personal mobility management.

Equipped with service trading and user pro�le man-
agement functionality the User Agent possesses pow-
erful tools to shield the user from agent management
tasks. Furthermore, our approach supports agent man-
agement services. In the next section we show how a
management service can utilise the User Agent.

4 On utilising the User Agent

When an agent requires user feedback or returns its
result while the user is not logged-in or disconnected,
the agent might decide to wait until the user logs-in or
reconnects. If this waiting is a busy waiting the agent
consumes agent system resources. Since the time un-
til the user's current agent system is available again
has no upper limit, agent systems are in danger of get-
ting blocked by waiting mobile agents. Thus, agent
systems should provide a mechanism which allows sus-
pending agents while the user's current agent system
is not available. This would allow the agent system to
store waiting agents persistently and free up memory
and processing resources.

One of the �rst agent systems which considers agent
waiting support is Agent TCL [2]. But the so-called
docking mechanism scales only if the docking machines
are appropriately distributed. Furthermore, personal
mobility is not considered: agents wait for disconnected
agent systems.

The Java based agent system Concordia addresses
agent waiting support by a Queue Manager [5], [8].
The latter provides a store and forward mechanism and
allows to enqueue agents in a asynchronous manner.
Agents can be stored in the queue of a local server
while a remote server is disconnected. When the re-
mote agent system comes back online, the local server
would forward the agent to the remote server. Again
personal mobility is not considered.

AMASE is a European ACTS Project adapting
an existing mobile agent system (SWARM system of
Siemens AG) to the requirements of a wireless compu-
tation environment.

AMASE supports agent waiting support by imple-
menting a so-called Kindergarten Service [9]. Although
personal mobility support is considered, a Kinder-
garten Service is not implemented on each agent sys-
tem due to memory constraints of small devices. But

particular small mobile devices require Agent Waiting
support.

Following, we propose the Waiting Support Mecha-
nism which suspends mobile agents and resumes them
when the user's current agent system is available.

The Waiting Support Mechanism comprises of three
agents: the Waiting Support Service Agent, the Wait-
ing Support Proxy Agent, and the User Agent. Each
Agent System runs a Waiting Support Proxy, while
User Agent and Waiting Support Service are running
only on wired connected agent systems. We assume
that in general wired connected agent system have
more processing as well as memory resources than wire-
less connected ones. Furthermore, the probability that
a wired connected agent system is disconnected or fails
is negligible.

4.1 The Waiting Support Proxy Agent

Each agent system runs a Waiting Support Proxy
Agent. The Waiting Support Proxy is responsible for
handling frequent disconnections of the agent system.
If an agent system is disconnected, mobile agents run-
ning on this system can neither reach another agent
system nor a Waiting Support Service. In that case
mobile agents can use the local Waiting Support Proxy.
The Waiting Support Proxy has a reduced functional-
ity set and refuses mobile agent registration requests if
the agent system is connected to the agent world.

The Waiting Support Proxy also runs a noti�cation
service. If the Proxy detects that its agent system has
recently reconnected then it sends requests to the User
Agent. The latter might send noti�cation messages
to registered Waiting Support Services (see protocol
description below).

4.2 The Waiting Support Service

From the mobile agents point of view, we must dis-
tinguish two scenarios: First, a Waiting Support Ser-
vice is available. Second, no Waiting Support Service
is available (local agent system is disconnected).

4.2.1 A Waiting Support Service is available

We have depicted this case in �gure 4. The agent sys-
tem on which the mobile agent is running is connected
to the Agent world while the user's current agent sys-
tem is temporarily disconnected. If an agent detects
that a destination agent system is not available it re-
quests a Waiting Support Service from the User Agent
(1). The mobile agent migrates to the Waiting Support
Service (2) and calls its registration method indicating

5



Mobile Agent Destination
Agent System

1

2

3

4

5

6

Disconnected

respond

Migration

register

register

flush

Service
Waiting Sup.

look-up
Waiting Support

register Waiting Sup.

Agent SystemUser Agent

Figure 4. Waiting Support Service is available:
Registration

the name of the agent's destination, the maximum sus-
pension time, and optionally, the agent's resource re-
quirements (3). The Service must register at the user's
User Agent (4). In the next step the Service must also
register with the local agent system to receive com-
munication events addressed to the mobile agent (the
agent should be resumed to process any communica-
tion request) (5). Finally, the Waiting Support 
ushes
(suspends and stores persistently) the mobile agent and
registers it with the agent's destination user name in
its local database (6).

Mobile Agent wake-up An agent can be resumed
for three reasons: The agent's suspension timer expires,
the Waiting Support Service receives an communica-
tion event, or the user reconnects.

In the two former cases the Waiting Support Ser-
vice de-registers from the User Agent and resumes the
mobile agent.

If a destination agent system reconnects its Waiting
Support Proxy (which has registered with the agent
system to receive network events) detects this and
starts the Waiting Support noti�cation process. The
noti�cation and wake-up process is depicted in �gure
5: After detecting a system reconnect a local Waiting
Support Proxy noti�es the user's User Agent (1). The
noti�cation message includes the destination agent sys-
tem address and an agent system resource description.
The User Agent forwards the noti�cation to the reg-
istered Waiting Support Services (according to multi
user pro�le forwarding rules) and stores the current
agent system address in the dynamic database (2).
Upon receiving the noti�cation, the Waiting Support
Service retrieves the resource requirements of all mo-
bile agents waiting for the agent system from its lo-
cal database and compares them to the agent system's

resources. The Waiting Support Service selects only
those agents for resumption which meet the agent sys-
tem's resource requirements (agents are sorted by wait-
ing time) and multicasts a message to them indicating
the destination agent system's identi�cation (3). Since
the Waiting Support Service monitors the communica-
tion events of the suspended mobile agents it detects
communication events (issued by itself) for the mo-
bile agents and resumes them (4). After resumption
the mobile agents detect the message of the Waiting
Support and start migrating to the destination agent
system (5).

Those agents which are not allowed to migrate to the
destination agent system due to resource constraints
need a special handling. We propose that the Waiting
Support Service sets a timer for each of these agents.
On timer expiration the Waiting Support Service re-
sumes these agents. Note that each agent also has a
maximum waiting timer. If this timer expires the agent
is resumed irrespective of the availability of the desti-
nation agent system.

4.2.2 No Waiting Support Service is available

The agent system on which the mobile agent runs is
disconnected and thus the agent must use the local
Waiting Support Proxy.

As mentioned before the Proxy has almost the same
functionality as the Waiting Support Service, but while
the latter resumes agents if the user's current agent
system is available again, the Proxy resumes agents if
the local agent system reconnects.

4.3 The User Agent

The User Agent forwards the user's current agent
system address according to user pro�le information
exchange rules and discovers a suitable Waiting Sup-
port Service. Since agents request a Waiting Support
Service from the User Agent it is expected that almost
all agents are waiting at the same Waiting Support
Service. If agents would have discovered services them-
selves they would probably be distributed over several
Waiting Support Services. But having just one Wait-
ing Support Service has two advantages: First, network
tra�c is reduced as only one registration and noti�ca-
tion message is required. Second, the Waiting Support
Service can negotiate resources in behalf of the user's
current agent system (thus reduces network tra�c).

6



forward
Notification

Multicast
wake-up

1

2

3

4

5

Re-Connected

Notification

event-notify

Migration

Service Proxy
Waiting Sup. Waiting SupportAgent SystemUser Agent

resume

Figure 5. Waiting Support Service is available:
Reconnect

5 Performance Considerations

Like every central approach, the User Agent has its
weaknesses. If the User Agent fails all applications de-
pending on it will fail too. Furthermore, due to its
importance network tra�c is increased because all mo-
bile agents of a user are expected to interact with the
user's User Agent. It seems that the weaknesses sur-
pass the strengths of our approach, but there is way to
mend these problems.

5.1 On mending the flaws of a centralised ap-
proach

The User Agents stores those static and dynamic
database entries in the LDAP directory (user pro�le
subtree) which are of interest to agent applications.
Thus, agent's can retrieve information from both the
LDAP directory or the User Agent. In that way the
User Agent utilises the replication mechanism of the
directory service to distribute information. If the User
Agent fails agent applications can still retrieve required
information from the LDAP directory. Furthermore,
most agent's are expected to interact with the directory
and thus tra�c is kept local (use replica server).

Still there are agents which must interact with the
User Agent (e.g. the Waiting Support Service, user
pro�le modi�cations). Most of these agents are man-
agement services and located close to the user's access
point. Implementing the User Agent as a mobile agent
which follows the user's movement keeps User Agent in-
teractions local. Although the User Agent might have
a huge code and data size, its migration costs are low:
Since it is expected that every user has a User Agent
its code is well distributed and almost available at each

agent system in the �xed network. Thus, it is expected
that the agent's code is not transfered to the desti-
nation agent system. Furthermore, most entries of the
static and dynamic database are stored in the user pro-
�le subtree | therefore, static and dynamic database
entries are not transfered during agent migration. We
conclude that User Agent migration can be performed
at considerable costs.

5.2 On analysing the central trader

Apart from network tra�c caused by User Agent
interactions we must also consider the tra�c caused
by dynamic database updates.

Basically, the User Agent should trade those service
which are frequently used by mobile agents. If the av-
erage number of service entry updates is larger than
the number of requests, updating the service entry at
regular intervals is useless.

There is a need for a intelligent service entry up-
date strategy as some services like the Waiting Sup-
port Service are only requested in certain situations.
Obviously, it makes no sense to trade Waiting Support
Services at regular intervals while the user is logged-in.
At that instant the user disconnects the User Agent
should discover a Waiting Support Services.

6 Conclusions

In this paper we proposed the User Agent which is
an active extension of the user pro�le. Among oth-
ers the User Agent acts as the user's central service
trader. Therefore, it maintains a dynamic database
which holds service references. The dynamic database
is constantly updated according to service descriptions
and user preferences. Our approach allows frequent
modi�cations of services descriptions and user prefer-
ences. These modi�cations a�ect all agents including
those which are already dispatched and still running.

It is envisaged to implement the agent in the Java
Agent Environment (JAE). JAE provides access to a
LDAP directory service. To distribute data, the agent's
dynamic database is stored in the directory. Mobile
agents either retrieve service references from the agent
itself or from the directory.

Apart from service trading the User Agent allows
maintaining more than one user pro�le, e.g. private
and business pro�le. The User Agent eases pro�le man-
agement and controls information exchange between
di�erent pro�les.

Although, we give reasons that the User Agent scales
and performs well further performance analysis is re-

7



quired. To this end we are implementing a simulation
model.

References

[1] David Chess, Colin Harrison, and Aaron Kershen-
baum, \Mobile agents: Are they a good idea?",
Tech. Rep. RC 19887, IBM, October 1994.

[2] Robert S. Gray, David Kotz, Saurab Nog, Daniela
Rus, and George Cybenko, \Mobile agents for mo-
bile computing", Tech. Rep. PCS-TR96-285, Dart-
mouth College, Computer Science, Hanover, USA,
May 1996.

[3] Dartmouth College, \D'agents",
http://agent.cs.dartmouth.edu/.

[4] Ernoe Kovacs, Klaus Roehrle, Hong-Yong Lach,
Bjoern Schiemann, and Carsten Pils, \Agent-based
mobile access to information services", in 4th ACTS
Mobile Communications Summit, June 1999, pp.
97{102.

[5] Mitsubishi Electric ITA, Horizon System Labora-
tory, Mobile Agent Computing | A White Paper,
January 1998.

[6] \JAE: Java Agent Environment", http://www-
i4.informatik.rwth-aachen.de/jae/.

[7] Anthony S. Park, Michael Emmerich, and Daniel
Swertz, \Service trading for mobile agents with
ldap as service directory", in IEEE 7th Intl. Work-

shop on Enabling Technologies: Infrastructure for

Collaborative Enterprises, WETICE'98. June 1998,
IEEE.

[8] Tom Walsh, Noemi Paciorek, and David Wong,
\Security and reliablity in concordia", in 31st An-

nual Hawai's International Conference on System

Science (HICSS31), January 1998.

[9] Ste�en Lipperts, Anthony S. Park, and Carsten
Pils, \Mobile agents at the boundary of �xed
and mobile networks", in 2nd International ACTS

Workshop on Advanced Services in Fixed and

Mobile Telecommunication Networks, Singapore,
November 1999.

8


