M-commerce services - what do we gain with mobile agents?

Jens Hartmann, Markus Hiick
Ericsson Eurolab Deutschland GmbH
Ericsson Allee 1, 52134 Herzogenrath

(Jens.Hartmann, Markus.Hueck)@ericsson.com
Phone: +49.2407.575-121, Fax: -400

8th February 2001

1 Introduction

Agent Technology, in particular Mobile Agent
Technology (MAT), is often seen as an enabler for
future communication concepts and might pave the
ground for flexible environments, where known and
trusted agents serving real user demands [HMB9S].
A mobile agent is a program roaming the net-
work under its own control on behalf of its owner
[CHK95]. It can migrate from host to host and in-
teract with other agents and resources on each host.
The agent should be able to execute on any machine
within a network, regardless of the processor type
or operating system. Thus, an independend agent
system has been installed on code system such as
a Java Virtual Machine (JVM).

A mobile agent operates independently of the ap-
plication from which the agent was invoked. The
agent operates asynchronously, meaning that the
client application does not have to wait for the
results. This is valuable for users who could not
always be reached by the network, e.g., nomadic
users. Remote programming allows a user to del-
egate a task to an agent. The communication de-
vice must be connected to the network only long
enough to send the mobile agent on its way and,
later, to take it home. It does not need to be con-
nected while the agent carries out its assignment.
In this paper an m-commerce agent platform, which
helps to carry out search and ordering activities
via WAP-enabled mobile phones, is introduced and
evaluated. Therefore, three different search meth-
ods using stationary as well as mobile agents have
been implemented and tested.

2 M-commerce description

Mobile e-commerce (m-commerce) is expected to
be the main driver for the upcoming new mobile
communication systems. Common e-commerce sce-
narios assume that the shopper is using a PC and a
medium-speed Internet connection (typical modem
speed of 50 kbit/s for downlink direction). Using
a WWW browser, the shopper can visit multiple
electronic merchants, distributed on various hosts.
A list of merchants is obtained by a portal site,
e.g., yahoo. The shopper compares the prices at
different merchants and finally decides to buy the
product at the merchant, which offers the best price
or makes a trustworthy impression to the shopper.
The user provides the merchant with the delivery
address, and shipping information. The payment
information is sent encrypted to the merchant. The
shopping process ends with the merchant’s confir-
mation of the transaction.

This complete shopping scenario takes in aver-
age 5 to 15 minutes and a a total of about 150 to
450 kByte of data has to be transfered [Hiic00]. Of
course, this is not applicable to 2nd generation mo-
bile phones, due to the limited existing data rates
and the comparable high communication costs. Be-
sides, the restricted capabilities of a WAP-enabled
mobile terminal regarding display, input, and data
transfer rate hinder the browsing of HTML pages.
The mobile phone’s browser supports in most cases
only WML, but not HTML. Even though, today
many major WWW sites offer WML content along
with normal HTML, WML is not the answer to all
restrictions of the terminal.

3 MCAP - An m-commerce

agent platform

The Mobile Commerce Agent Platform (MCAP),
which is introduced in this paper, provides a con-
venient way for accessing all kinds of e-commerce
services via WAP-enabled mobile communication
devices. Many research projects in the mobile
commerce area deal only with mobile payment.
Other phases of the m-commerce as for example
the browsing and ordering raise diverse problems,
too, mostly relating to the limited display, input,
and transmission speed capabilities of mobile ter-
minals. The MCAP approach shows a solution that
handles all phases of the m-commerce, see Fig. 1.
The responsibility for the payment transaction is
transferred to the MCAP as already proposed in a
similar scenario in [HEGT99).

Common
M-Commerce

MCAP -
enhanced
M-Commerce

Mobile
Station

Merchants

Figure 1: MCAP Placement

The MCAP consists of an agent platform (Voy-
ager), a web server (Apache), and a database
(mSQL), and generates a profile for each regis-
tered user, containing address and payment infor-
mation. To fully utilize the services it is neces-
sary for the user to supply the MCAP with a set
of valid payment information, e.g., SET and HBCI.
Since this is highly sensitive data, a full trusted re-
lationship between user and MCAP is required. A
malicious MCAP is capable of charging the user’s
bank account without any user interference. Mer-
chants have to register at the MCAP. Moreover,
they should provide an infrastructure that is com-
patible to the one used by the MCAP. A network

HTTP Server

% - Voyager
PHP

Merchant n

Figure 2: Scenario I: MSA

connection should be available at any time, because
all queries have to be handled locally at the side of
the merchant.

The agent platform Voyager of ObjectSpace
[HGF98] handles the communication of the diverse
agents that are responsible for the information re-
trieval, information storage, user notification, and
payment transaction. The agent mobility lies in
the scope of functions of Voyager, too. The Apache
web server is the front-end for all user communica-
tion. It delivers WML content that is generated on
demand by PHP scripts.

Services are not limited to the purchase of or-
dinary e-commerce goods, but can be extended
to include hotel rooms, a restaurant guide, or
car rentals, for example. Most of these services
gain additional advantages, if the user’s location is
taken into account. The location can be obtained
by the mobile network operator or directly via
the WTAGSM.Location() function of WMLScript,
which returns the Location Area Code (LAC) and
the Cell ID [WAPOS].

4 Search Agents

This section deals with the information retrieval,
which is especially important, because an intelli-
gent search service reduces the number of user in-
teractions to a minimum. Three search scenarios
are regarded, two of them are based on mobile
agents and the last one on a stationary agent.

4.1 Scenario I: Agent-based search

This implementation demands an agent platform,
the Voyager ORB in this case, and an SQL database

HTTP Server

)
B w | sl

Merchant 1

@
A

Merchant n

Figure 3: Scenario II: MSA with XML Interface

to be installed on each involved host. A PHP based
script within the MCAP receives the HTTP user re-
quest. It retrieves the user data and passes the in-
formation to the Voyager agent server. An overview
of the hosts and installations is given in Fig. 2. The
MCAP launches a Mobile Search Agent (MSA) af-
ter checking whether the requested product group
is in the scope of the available merchants.

The MSA retrieves a list of merchants that come
into question for the product. With all information
collected, the MSA moves to the first merchant in
his list. If the Voyager based merchant has available
resources, it accepts and executes the agent after
downloading the state and class information.

The agent queries the local database for the
product. If the result is qualified, meaning that it
matches all necessary conditions in regard to price,
availability, and description, the agent keeps the re-
sult. Former result sets may have to be overruled
to reduce the data size. The search method, the
proceeded time, and the timeout selection deter-
mine, if the agent moves to the next merchant or
returns to his home to deliver the outcomes. Upon
arrival at home the agent stores the results in the
database. Another agent is triggered, which is re-
sponsible for informing the user of the outcome of
the product search.

4.2 Scenario II: Agent-based search
with XML interface

This scenario is quite similar to the previous one.
Again, an agent platform is necessary on all hosts
involved. The main difference is that the agents are
equipped with an XML interfaces, which enables
agent to agent communication. Thus, the MSA

HTTP Server

=
-

=5
sQL

Merchant n

Figure 4: Scenario III: SSA

does not communicate with databases directly, see
Fig. 3. A local agent generates a list of merchants
and stores it together with the user request data in
an XML document. This document is passed to an
MSA. The MSA uses an XML parser to validate
the document and to retrieve the information.

The MSA moves to the first merchant in his list.
There, it establishs a connection to the Local Mer-
chant Agent (LMA). The MSA looks up the corre-
sponding Java class in Voyager’s directory service
and generates an XML document, containing the
product description and passes it to the LMA. The
implementation of the LMA lies in the responsibil-
ity of the merchant. The LMA encapsulates the
result in an XML document and returns it to the
MSA. The MSA decides how to proceed: if its task
is fulfilled, it returns to its origin, otherwise the
search continues at the next merchant.

At the MCAP the MSA constructs an XML doc-
ument containing all retrieved results and passes
it to the agent XHOME. The XHOME agent is re-
sponsible for storing the results in the database and
notifying the user.

4.3 Scenario III: SQL-based search

The Stationary Search Agent (SSA) is solely imple-
mented in PHP, because the limited functionality
of the stationary agent does not require agent to
agent communication capabilities nor agent mobil-
ity. The basic setup is shown in Fig. 4. The se-
quence of tasks is similar to the MSA of scenario I.
The major difference is the missing mobility of the
SSA. A list of merchants is generated and shuffled
randomly to ensure load balancing and equalization
of all merchants. The SSA queries the merchants
successively for the product: A remote SQL con-

nection is established and an SQL query is sent to
the merchant. All results have to be transmitted
via the network connection from the merchant to
the MCAP, the filtering is performed after recep-
tion at the MCAP. When all queries are processed,
the filtered results are stored in the database and
a user notification is executed.

The merchants have to provide an SQL database
with remote accessibility and a predefined set of
tables and fields. An agent platform is not required
at the merchant.

5 Performance evaluation

The product search time depends on the scenario
and the search method: FIRST ends after one re-
sult was retrieved, THREE ends after grabbing
three results. Search method BEST and SMART
always query all available merchants. Best delivers
the three best results to the user. SMART differs
from the other search methods. It is used to search
for products that are not addressed by a concrete
name but by a set of characteristics. The agents
have to evaluate each data set by comparing a set
of parameters, regarding even flexible thresholds.
The product search time increases with the num-
ber of merchants for all scenarios, but the maxi-
mum user request rate the system can cope with
is only changed for scenario ITI, the SSA. For the
SSA the maximum user request rate decreases sig-
nificantly by increasing the number of merchants.
The search method SMART sticks out: the maxi-
mum user request rate that the SSA can handle is
decreased even more, because the SSA has to filter
the received result sets at the MCAP, consuming
more processing power, whereas the MSAs filter
the result sets right at the merchants. Figure 5
shows this trend in detail. It shows the maximum
user requests for a fixed MCAP workload of 80%
dependent on the number of requested merchants.
The values for the MSAs are constant at 3.2 and 4.8
user requests per second, whereas the SSA shows its
dependence to the number of requested merchants.
The break-even is reached at 18 and 27 merchants
for the MSA and the MSA with XML, respectively.
From the MCAP’s point of view, the MSA is very
attractive, if a high number of merchants has to be
requested or the information retrieval demands a
more complex task than a simple query can accom-

plish. Since the number of requested merchants is
not necessarily known at the beginning of a prod-
uct search, the usage of MSAs helps to estimate the
workload of the MCAP.

Figure 6 represents the product search time for
a well-assumed mixture of all four search methods.
The SSA’s maximum user request rate is located in
between the values of the MSA with and without
XML interface.

Maximum arrival rate dependent on merchants

\ — MSA
- —- MSA+XML
SSA

Maximum User Request Rate [1/s]
>

| . 1 . . . i
5 10 15 20 25 30 35 40
Queried Merchants

Figure 5: Ratio of merchants to user request rate

Product search time dependent on the user request rate
14 .

'
|
I
b

Product Search Time [s]

1 1 1 1 I 1 . 1 . | | i
05 1 15 2 25 3 35 4 45 5 55 6
User Request Rate [1/s]

Figure 6: Mixture of all four search methods

More details of the performance study will be in-
cluded in final version of this research paper.

6 Results and Conclusion

The center of this implemented m-commerce sce-
nario is the MCAP. It is responsible for receiv-
ing the user requests, handling the user profiles,

launching the search agents, and stores all infor-
mation in a database. The implementation regards
stationary (SSA) and mobile agents (MSA) for per-
forming the product search. MSAs migrate from
host to host to query local resources. Two kind
of MSAs have been implemented: one uses SQL
to query the local database, the other one uses an
XML interface to communicate to local agents. The
XML generation and parsing requires more perfor-
mance overhead, but enables a versatile and ex-
pandable communication interface towards MCAP
and merchants. The alternative to MSAs is the Sta-
tionary Search Agent (SSA). The SSA executes all
queries from the MCAP by using SQL. The SSA is
in most cases faster than the MSAs: a search over
40 merchants takes about 2 seconds for the SSA,
the MSA needs five times longer, and the MSA with
XML interface seven times longer. This is caused
by the higher processing time of mobile agents in
comparison with their stationary counterparts. On
the other hand MSAs can move to the place of the
data source to filter the results locally, the SSA has
to transfer all data sets that come into question
from the merchant to the MCAP and filter them
locally. This is exhibited in the behaviour of the
search times for the SMART search. The process-
ing time difference of MSA and SSA falls behind the
difference in transfer times. A SMART search per-
formed by an SSA takes about 40 seconds, whereas
the MSAs just need about 30 seconds, transferring
only a fraction of the data volume.

Due to the fact that mobile agents use dis-
tributed processing capacities, the scaling be-
haviour of the MCAP differs for MSA and SSA.
While MSAs generate a fixed load on the MCAP,
due to the fact that the MCAP is not involved in
the actual product search, SSAs start all actions at
the MCAP, resulting in a load that increases with
the number of merchants and the complexity of the
filter process. Hence, depending on the used hard-
ware at a certain number of merchants a break-even
between SSA and MSAs will be reached.

Mobile agents are flexible, if equipped with the
capability to react to changes to the normal trans-
action strategy. Static agents lack the ability for
direct communication with a counterpart. Each
message is transferred over a network link. This
feature is especially critical, if the network link is
not steady as for a radio link. Mobile agents can op-
erate without the interference of the home server. A

dynamic communication interface such as XML can
define new transactions as they become appropri-
ate, e.g., enabling the agent for a direct purchase.

All presented search scenarios are capable can-
didates for an m-commerce service. The applica-
tion of the scenario has to be decided from case to
case. Each implementation has its advantages and
disadvantages, in regards to duration, quality, and
costs. The SSA is faster as the MSAs for the ordi-
nary search, but falls behind the MSAs, if a more
complex search or task is requested.

References

David Chess, Colin Harrison, and
Aaron Kershenbaum. Mobile agents:
Are they a good idea? IBM Research
Report, 1995.

[CHK95]

[HEGT99] Jens Hartmann, Rune Evensen,
Carmelita Gorg, Peyman Farjami, and
Hai Long. Agent-based banking trans-
action and information retrieval - what
about performance issues? In Furopean
Wireless’99, Munich, Deutschland,

Oktober 1999.

[HGF98] Jens Hartmann, Carmelita Gorg, and
Peyman Farjami. Agent technology for
the umts vhe concept. In ACM Inter-
national Workshop on Wireless Mobile
Multimedia. ACM SIGMOBILE, Dal-

las, USA, October 1998.

[HMB98] Lars Hagen, Thomas Magedanz, and
Markus Breugst. Impacts of mobile
agent technology on mobile communica-
tions system evolution. IFEE Personal

Communication Magazin, August 1998.

Markus Hiick. Performance evaluation
of an agent-based e-commerce applica-
tion for wap-enabled mobile communi-
cation devices. Master’s thesis, RWTH
Aachen, Dep. of Communication Net-
works, August 2000.

[Hiic00]

[WAP98] Wireless application protocol architec-
ture specification 1.1. WAP Forum,

1998.

